
OpenCV Tutorials Introduction to OpenCV

Custom Search

OpenCV 4.0.0
Open Source Computer Vision

Installation in Linux

The following steps have been tested for Ubuntu 10.04 but should work with other distros as well.

Required Packages

GCC 4.4.x or later

CMake 2.8.7 or higher

Git

GTK+2.x or higher, including headers (libgtk2.0-dev)

pkg-config

Python 2.6 or later and Numpy 1.5 or later with developer packages (python-dev, python-numpy)

ffmpeg or libav development packages: libavcodec-dev, libavformat-dev, libswscale-dev

[optional] libtbb2 libtbb-dev

[optional] libdc1394 2.x

[optional] libjpeg-dev, libpng-dev, libtiff-dev, libjasper-dev, libdc1394-22-dev

[optional] CUDA Toolkit 6.5 or higher

The packages can be installed using a terminal and the following commands or by using Synaptic Manager:

[compiler] sudo apt-get install build-essential
[required] sudo apt-get install cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev
[optional] sudo apt-get install python-dev python-numpy libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev libjasper-

dev libdc1394-22-dev

Getting OpenCV Source Code

You can use the latest stable OpenCV version or you can grab the latest snapshot from our Git repository.

Getting the Latest Stable OpenCV Version

Go to our downloads page.

Download the source archive and unpack it.

Getting the Cutting-edge OpenCV from the Git Repository

Launch Git client and clone OpenCV repository. If you need modules from OpenCV contrib repository then clone it as well.

For example

cd ~/<my_working_directory>
git clone https://github.com/opencv/opencv.git
git clone https://github.com/opencv/opencv_contrib.git

Building OpenCV from Source Using CMake

1. Create a temporary directory, which we denote as <cmake_build_dir>, where you want to put the generated Makefiles, project files as well the object

files and output binaries and enter there.

For example

cd ~/opencv
mkdir build
cd build

2. Configuring. Run cmake [<some optional parameters>] <path to the OpenCV source directory>

For example

cmake -D CMAKE_BUILD_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local ..

or cmake-gui

set full path to OpenCV source code, e.g. /home/user/opencv

set full path to <cmake_build_dir>, e.g. /home/user/opencv/build

set optional parameters

run: “Configure”

Main Page Related Pages Modules Namespaces Classes Files Examples Java documentation Search

https://docs.opencv.org/4.0.0/index.html
https://docs.opencv.org/4.0.0/pages.html
https://docs.opencv.org/4.0.0/modules.html
https://docs.opencv.org/4.0.0/namespaces.html
https://docs.opencv.org/4.0.0/annotated.html
https://docs.opencv.org/4.0.0/files.html
https://docs.opencv.org/4.0.0/examples.html
https://docs.opencv.org/4.0.0/javadoc/index.html
https://docs.opencv.org/4.0.0/d9/df8/tutorial_root.html
https://docs.opencv.org/4.0.0/df/d65/tutorial_table_of_content_introduction.html
https://github.com/opencv/opencv.git
http://opencv.org/releases.html
http://github.com/opencv/opencv
http://github.com/opencv/opencv_contrib

run: “Generate”

Note

Use cmake ‐DCMAKE_BUILD_TYPE=Release ‐DCMAKE_INSTALL_PREFIX=/usr/local .. , without spaces after -D if the above example doesn't work.

3. Description of some parameters

build type: CMAKE_BUILD_TYPE=Release\Debug

to build with modules from opencv_contrib set OPENCV_EXTRA_MODULES_PATH to <path to opencv_contrib/modules/>

set BUILD_DOCS for building documents

set BUILD_EXAMPLES to build all examples

4. [optional] Building python. Set the following python parameters:

PYTHON2(3)_EXECUTABLE = <path to python>

PYTHON_INCLUDE_DIR = /usr/include/python<version>

PYTHON_INCLUDE_DIR2 = /usr/include/x86_64-linux-gnu/python<version>

PYTHON_LIBRARY = /usr/lib/x86_64-linux-gnu/libpython<version>.so

PYTHON2(3)_NUMPY_INCLUDE_DIRS = /usr/lib/python<version>/dist-packages/numpy/core/include/

5. [optional] Building java.

Unset parameter: BUILD_SHARED_LIBS

It is useful also to unset BUILD_EXAMPLES, BUILD_TESTS, BUILD_PERF_TESTS - as they all will be statically linked with OpenCV and can

take a lot of memory.

6. Build. From build directory execute make, it is recommended to do this in several threads

For example

make -j7 # runs 7 jobs in parallel

7. [optional] Building documents. Enter <cmake_build_dir/doc/> and run make with target "doxygen"

For example

cd ~/opencv/build/doc/
make -j7 doxygen

8. To install libraries, execute the following command from build directory

sudo make install

9. [optional] Running tests

Get the required test data from OpenCV extra repository.

For example

git clone https://github.com/opencv/opencv_extra.git

set OPENCV_TEST_DATA_PATH environment variable to <path to opencv_extra/testdata>.

execute tests from build directory.

For example

<cmake_build_dir>/bin/opencv_test_core

Note

If the size of the created library is a critical issue (like in case of an Android build) you can use the install/strip command to get the smallest size

possible. The stripped version appears to be twice as small. However, we do not recommend using this unless those extra megabytes do really

matter.

Generated on Sun Nov 18 2018 11:54:23 for OpenCV by 1.8.12

https://github.com/opencv/opencv_extra
http://www.doxygen.org/index.html

