Open Source Compute		4.0.0 er Vision	•					
Main Page	Related Pages	Modules	Namespaces 🔻	Classes -	Files -	Examples	Java documentation	Qr Search
OpenCV Tutorials / Introduction to OpenCV /								

Installation in Linux

The following steps have been tested for Ubuntu 10.04 but should work with other distros as well.

Required Packages

- GCC 4.4.x or later
- CMake 2.8.7 or higher
- Git
- GTK+2.x or higher, including headers (libgtk2.0-dev)
- pkg-config
- Python 2.6 or later and Numpy 1.5 or later with developer packages (python-dev, python-numpy)
- ffmpeg or libav development packages: libavcodec-dev, libavformat-dev, libswscale-dev
- [optional] libtbb2 libtbb-dev
- [optional] libdc1394 2.x
- [optional] libjpeg-dev, libpng-dev, libtiff-dev, libjasper-dev, libdc1394-22-dev
- [optional] CUDA Toolkit 6.5 or higher

The packages can be installed using a terminal and the following commands or by using Synaptic Manager:

```
[compiler] sudo apt-get install build-essential
[required] sudo apt-get install cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev
[optional] sudo apt-get install python-dev python-numpy libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev libjasper-
dev libdc1394-22-dev
```

Getting OpenCV Source Code

You can use the latest stable OpenCV version or you can grab the latest snapshot from our Git repository.

Getting the Latest Stable OpenCV Version

- Go to our downloads page.
- Download the source archive and unpack it.

Getting the Cutting-edge OpenCV from the Git Repository

Launch Git client and clone OpenCV repository. If you need modules from OpenCV contrib repository then clone it as well.

For example

```
cd ~/<my_working_directory>
git_clone_https://github.com/opencv/opencv.git
git_clone_https://github.com/opencv/opencv_contrib.git
```

Building OpenCV from Source Using CMake

1. Create a temporary directory, which we denote as <cmake_build_dir>, where you want to put the generated Makefiles, project files as well the object files and output binaries and enter there.

For example

cd ~/opencv mkdir build cd build

2. Configuring. Run cmake [<some optional parameters>] spath to the OpenCV source directory>

For example

cmake -D CMAKE_BUILD_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local ..

or cmake-gui

- $\circ~$ set full path to OpenCV source code, e.g. /home/user/opencv
- set full path to <cmake_build_dir>, e.g. /home/user/opencv/build
- set optional parameters
- run: "Configure"

run: "Generate"

Note

Use cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=/usr/local ..., without spaces after -D if the above example doesn't work.

- 3. Description of some parameters
 - build type: CMAKE_BUILD_TYPE=Release\Debug
 - to build with modules from opencv_contrib set OPENCV_EXTRA_MODULES_PATH to contrib/modules/>
 - set BUILD_DOCS for building documents
 - set BUILD_EXAMPLES to build all examples
- 4. [optional] Building python. Set the following python parameters:
 - PYTHON2(3)_EXECUTABLE = <path to python>
 - PYTHON_INCLUDE_DIR = /usr/include/python<version>
 - PYTHON_INCLUDE_DIR2 = /usr/include/x86_64-linux-gnu/python<version>
 - PYTHON_LIBRARY = /usr/lib/x86_64-linux-gnu/libpython<version>.so
 - PYTHON2(3)_NUMPY_INCLUDE_DIRS = /usr/lib/python<version>/dist-packages/numpy/core/include/
- 5. [optional] Building java.
 - Unset parameter: BUILD_SHARED_LIBS
 - It is useful also to unset BUILD_EXAMPLES, BUILD_TESTS, BUILD_PERF_TESTS as they all will be statically linked with OpenCV and can take a lot of memory.
- 6. Build. From build directory execute make, it is recommended to do this in several threads

For example

make -j7 # runs 7 jobs in parallel

7. [optional] Building documents. Enter <cmake_build_dir/doc/> and run make with target "doxygen"

For example

cd ~/opencv/build/doc/ make -j7 doxygen

- 8. To install libraries, execute the following command from build directory
- sudo make install

9. [optional] Running tests

• Get the required test data from OpenCV extra repository.

For example

git clone https://github.com/opencv/opencv_extra.git

- set OPENCV_TEST_DATA_PATH environment variable to <path to opencv_extra/testdata>.
- execute tests from build directory.

For example

<cmake_build_dir>/bin/opencv_test_core

Note

If the size of the created library is a critical issue (like in case of an Android build) you can use the install/strip command to get the smallest size possible. The *stripped* version appears to be twice as small. However, we do not recommend using this unless those extra megabytes do really matter.

Generated on Sun Nov 18 2018 11:54:23 for OpenCV by 0 21 1.8.12